
Why Move From Relational
to Riak?
High Availability
Strongly consistent operations provide applications
with guarantees that read operations will reflect the last
successful update to your database. They are an important
part of relational database systems, enabling operations
(like transactions) that are essential for some types of
applications. Strong consistency is relatively straightforward
when there is one large single relational database server.
Once your dataset grows beyond the capacity of a single
machine, it becomes necessary to scale the database and
operate in a distributed fashion.

Relational databases typically address the challenge of
availability with a master/replica architecture, where the
topology of a cluster is comprised of a single master
and multiple replicas. Under this configuration, the
master is responsible for accepting all write operations
and coordinating with replicas to apply the updates in a
consistent manner. Read requests can either be proxied
through the master or sent directly to the replicas.

But what happens when your relational master server
fails? The database will favor consistency and reject write

operations until the failure is resolved. This can lead
to a window of write unavailability, which is unacceptable
in many application designs. Most master/replica
architectures recognize that a master is a single point
of failure and will perform automatic master failover
(a replica is elected as a new master when failure of
the master is detected).

In contrast, Riak is a masterless system designed for
high availability, even in the event of hardware failures or
network partitions. Any server (termed a “node” in Riak) can
serve any incoming request and all data is replicated across
multiple nodes. If a node experiences an outage, other
nodes will continue to service read and write requests.

WHITEPAPER

Relational to Riak

BASHO TECHNOLOGIES, INC. // WWW.BASHO.COM 1

Introduction
This whitepaper looks at why companies choose Riak
over a relational database. We focus specifically on
availability, scalability, and the key/value data model. Then
we analyze the decision points that should be considered
when choosing a non-relational solution and review data
modeling, querying, and consistency guarantees. Finally, we
end with simple patterns for building common applications
in Riak using its key/value design, dealing with data conflicts
that emerge in an eventually consistent system, and discuss
multi-datacenter replication.

DOWNTIME CAN COST YOU MILLIONS

For many of today’s applications and platforms,
high availability is the most important requirement.

APPLICATIONS, USERS, AND MACHINES
GENERATE UNSTRUCTURED DATA

Cloud Mobile Social

relational →
Riak At-a-Glance
•	 Distributed NoSQL database
•	 Helps you store, manage, and secure

unstructured data
•	 Fault-tolerant, highly available platform
•	 Lower cost to operationalize than traditional

relational databases
•	 Scales both up and out; Easy to manage at scale
•	 Add commodity hardware, as needed, for

additional capacity

http://basho.com

WHITEPAPER  Relational to Riak

BASHO TECHNOLOGIES, INC. // WWW.BASHO.COM 2

Further, if a node becomes unavailable to the rest of the
cluster, a neighboring node will take over the

responsibilities of the missing node. The neighboring node
will pass new or updated data (termed “objects”) back to
the original node once it rejoins the cluster. This process is
called “hinted handoff” and it ensures that read and write
availability is maintained automatically to minimize your
operational burden when nodes fail or comeback online.

For many of today’s applications and platforms, high
availability has a direct impact on revenue. A few examples
include: cloud services, online retail, shopping carts, gaming
and betting, and advertising. Further, lack of availability can
damage user trust and result in a poor user experience
for many social media and chat applications, websites, and
mobile applications. Riak provides the high availability needed
for your critical applications. It provides a better solution than
relational databases when availability is a key requirement.

Minimizing the Cost of Scale
Relational databases scale by increasing the server and
storage capacity. Special, expensive versions of the
database may technically distribute load across multiple
machines, but they rely on shared storage that often
becomes a bottleneck. These systems are not designed to
run on commodity hardware. An Oracle RAC system can
cost millions to store a mere 20TB of data, a tiny number
in the realm of Big Data where petabytes, exabytes, and
zettabytes are the common units of measure. Some Riak
customers ingest over 20TB of data per day.

Another way databases scale is to use sharding. Sharding
distributes data across several database servers. A common
example of this would be putting your user data for
differing geographical regions (e.g., US and EU) on different
machines, or using an alphabetical or numerical order to
split data. While this seems simple, sharding is complex and
inherently inflexible.

First, writing and maintaining custom sharding logic
increases the overhead of operating and developing an
application on the database. Significant growth of data, or
traffic, typically means significant, often manual, re-sharding
projects. Determining how to intelligently split the dataset
without negatively impacting performance, operations, and
development presents a substantial challenge — especially
when dealing with “big data,” rapid scale, or peak loads.
Rapidly growing applications frequently outpace an existing

sharding scheme and, when the data in a shard grows
too large, the shard must again be split. While several
“auto”-sharding technologies have emerged in recent
years, these methods are often imprecise and still require
manual intervention. Sharding can often lead to “hot spots”
in the database where a few physical machines become
responsible for storing and serving a disproportionately
high amount of both data and requests. Hot spots can lead
to unpredictable latency and degraded performance.

In Riak, data is automatically distributed evenly across
nodes using consistent hashing. Consistent hashing
ensures data is evenly distributed around the cluster
and new nodes can be added with automatic, minimal
reshuffling of data. This significantly decreases risky
hot spots in the database and lowers the operational
burden of scaling.

THE RIAK “RING” ARCHITECTURE

Node 0

Node 1

Node 2

ring with
32 partitions

a single vnode/partition

Node 3

RIAK IS MASTERLESS,
DEPLOYED AS A CLUSTER OF NODES

WHITEPAPER  Relational to Riak

BASHO TECHNOLOGIES, INC. // WWW.BASHO.COM 3

can easily store and retrieve documents, images, videos,
and much more.

With Riak there are no join operations since the key/value
model has no concept of columns and rows. Riak is
queried via HTTP requests, via the protocol buffers API,
or through various client libraries. There are several
powerful querying options:

•	 Riak Search: Integration with Apache Solr provides
full-text search and support for Solr’s client query APIs.

•	 Secondary Indexes: Secondary Indexes (2i) give
developers the ability to tag an object stored in Riak
with one or more query values. Indexes can be either
integers or strings, and can be queried by either exact
matches or ranges of values.

•	 MapReduce: Developers can leverage Riak
MapReduce for tasks like filtering documents by tag,
counting words in documents, and extracting links to
related data. It offers support for JavaScript and Erlang.

Riak stores data using a simple key/value model. Data
entries in Riak are referred to as “objects.” Key/value
pairs are logically grouped together in namespaces called
“buckets.” As you write new keys to Riak, the object’s
bucket/key pair is hashed. The resulting value maps
onto a 160-bit integer space. This integer space can be
conceptualized as a ring that is used to determine
where data is placed on physical machines.

Riak tokenizes the total key space into a fixed number of
equally sized partitions (default is 64). Each partition owns
the given range of values on the ring and is responsible for

all buckets and keys that, when hashed, fall into that range.
A virtual node (a “vnode”) is the process that manages
each of these partitions. Physical machines evenly divide
responsibility for vnodes.

Hashing and shared responsibility for keys across nodes
ensures that data in Riak is evenly distributed. When
machines are added, data is rebalanced automatically with
no downtime. New machines take responsibility for their
share of data by assuming ownership of some of the
partitions; existing cluster members hand off the relevant
partitions and the associated data. The new node continues
claiming partitions until data ownership is equal. The ring
state is shared around the cluster by means of a “gossip
protocol.” Whenever a node changes its claim on the ring,
it announces (i.e., “gossips”) this change to other nodes so
that those nodes can respond appropriately. Nodes also
periodically re-announce what they know in case any nodes
happened to miss previous updates.

Simple Data Models

With the tremendous growth in data — especially big data
and new types of gaming, social, and mobile applications —
there is a growing need to store unstructured data
(i.e., data that does not fit easily in the rigid data model
of relational systems). This unstructured data is more
effectively stored in a simple and powerful key/value store.

Riak stores all types of objects. Riak, as a key/value platform,
provides more flexibility and simplicity than a traditional
relational database. Riak provides multi-model support
including key/value, search, and object storage ensuring you

The relational data model is complex
and inflexible for storing massive amounts

of unstructured data.

Riak is easier to manage, doesn’t require
sharding, and runs on commodity hardware.

This provides you with significantly reduced costs
of scale over traditional relational databases.

RIAK KEY/VALUE PAIRS STORED
IN A BUCKET

key value
key value
key value
key value

bucket

WHITEPAPER  Relational to Riak

BASHO TECHNOLOGIES, INC. // WWW.BASHO.COM 4

Operational & Development Considerations
Powerful Data Modeling In Riak
The table below illustrates key/value mappings for common application types. Values in Riak are stored on disk as binaries
— JSON or XML documents, images, text, etc.

Application Type Key Value

Session User/Session ID Session Data

Advertising Campaign ID Ad Content

Logs Date Log File

Sensor Date, Date/Time Sensor Updates

User Data Login, eMail, UUID User Attributes

Content Title, Integer Text, JSON/XML/HTML
Document, Images, etc.

Consider, for example, one of Riak’s common use cases,
storing user and session data. In a relational database, the
“users” table is well known, providing a unique identifier per
user, along with a series of identifying information for each
user in individual columns, such as:

•	 First name
•	 Last name
•	 Interests
•	 Site Visits Counter
•	 Paid Account Identifier

In this example, the data can then be used to correlate
or count paid users and/or common interests via
a series of SQL queries against the row/column structure
of the users table.

Riak, in contrast, provides flexibility in how this data can be
modeled based upon the application use case. It may be
desirable to create a Users bucket with the UserName (or
Unique Identifier) as the key and a JSON object storing all
user attributes as the value.

You can also leverage the power of Riak Data Types by
creating a map type for each user, storing:

•	 User’s first and last name strings in registers
•	 User interests as a set
•	 User visits in a counter
•	 A paid account identifier in a flag

One of the best ways to enable application interaction with
objects (a key/value pair) in Riak is to provide structured
bucket and key names for the objects. This approach often
involves wrapping information about the object in the
object’s location data itself.

For example, appending a timestamp, UUID, or
Geographical coordinate to a key’s name allows for fine-
grained queryability via simple lookup to locate and retrieve
a specific set of information. Leveraging the same naming
mechanism as created for users (UniqueID as the key)
enables, in a separate sessions bucket, storing the UUID
append with a timestamp as the key and the session data
(in binary format) as the object. In this way, using the same
UUID, it is possible to obtain both user and session data
stored in different buckets and in different formats.

USERS BUCKET

Key Value

Unique Identifier
(e.g. UserName)

JSON Object
(stores all user attributes)

•	 User’s first and last name strings in registers
•	 User Interests as a set
•	 User visits in a counter
•	 A paid account identifier in a flag

YOU CAN ALSO LEVERAGE THE POWER
OF RIAK DATA TYPES BY CREATING A MAP TYPE
FOR EACH USER, STORING:

WHITEPAPER  Relational to Riak

BASHO TECHNOLOGIES, INC. // WWW.BASHO.COM 5

Multi-site replication is critical for many of today’s platforms
and applications. Not only does replication across multiple
clusters provide geographic data locality (i.e., the ability
to serve global traffic at low-latencies), but it can also be
an integral part of a disaster recovery or backup strategy.
You can also use multi-site replication to maintain
secondary data stores, both for failover as well as for
performing intensive computation without disrupting
production load.

Multi-site replication in Riak works differently than the
typical approach of relational databases. In Riak’s multi-
datacenter replication, one cluster acts as a “primary
cluster.” The primary cluster handles replication requests
from one or more “secondary clusters” (generally located in
datacenters in other regions or countries). If the datacenter
with the primary cluster goes down, a secondary cluster
can take over as the primary cluster. In this sense, Riak’s
multi-datacenter capabilities are “masterless.”

In multi-datacenter replication, there are two primary
modes of operation — full-sync and real-time. In full-sync
mode, a complete synchronization occurs between primary
and secondary cluster(s). In real-time mode, continual,
incremental synchronization occurs and replication is
triggered by new updates. Full-sync is performed upon
initial connection of a secondary cluster, and then
periodically (by default, every 6 hours). Full-sync is also
triggered if the TCP connection between primary and
secondary clusters is severed and then recovered.

Data transfer is unidirectional (primary → secondary).
However, bidirectional synchronization can be achieved
by configuring a pair of connections between clusters.

Multi-Datacenter Operations

Resolving Data Conflicts

In any system that replicates data, conflicts can arise
(e.g., if two clients update the same object at the exact same
time or if not all updates have yet reached hardware that
is experiencing lag). As discussed earlier, Riak is “eventually
consistent” — while data is always available, not all replicas
may have the most recent update at the same time, causing
brief periods (generally on the order of milliseconds) of
inconsistency while all state changes are synchronized.

However, Riak provides features to detect and help resolve
the statistically small number of incidents when data conflicts
occur. When a read request is performed, Riak looks up
all replicas for that object. By default, Riak will return the most
updated version. You can also resolve conflicts using Riak
Data Types to simplify the burden of producing data
convergence at the application level by absorbing the
complexity into Riak itself.

Further, when an outdated object is discovered as part of a
read request, Riak will automatically update the out-of-sync
replica to make it consistent. Read Repair, a self-healing
property of the database, will even update a replica that
returns a “not_found” in the event that a node loses it due to
physical failure.

Riak also includes “Active Anti-Entropy,” which is an automatic
self-healing property that runs in the background. Rather
than waiting for a read request to trigger a replica repair
(as with Read Repair), Active Anti-Entropy constantly uses
a hash tree exchange to compare replicas of objects and
automatically repairs or updates any that are divergent,
missing, or corrupt. This can be beneficial for large clusters
storing “stale” data.

MULTI-DATACENTER OPERATIONS

Next Steps
•	 To read about Riak and Riak Enterprise, including more in-depth technical details for developers 	

and operators, visit our documentation portal at http://docs.basho.com/riak/latest/.

•	 Riak is available open source for download at http://basho.com/resources/downloads/.

•	 If you are interested in Riak Enterprise and would like to discuss your possible use case, 	
please contact us at techtalk@basho.com.

•	 For more information visit www.basho.com or follow us on Twitter at www.twitter.com/basho.

WHITEPAPER  Relational to Riak

BASHO TECHNOLOGIES, INC. // WWW.BASHO.COM 6

Choosing a database solution affects your infrastructure,
budget, and staff. After deciding between a relational and
NoSQL database, you need to figure out which specific
solution will best meet your organization's needs. Riak is
designed to deliver maximum data availability, to scale
linearly using commodity hardware, and to provide
powerful yet simple data models for storing massive
amounts of unstructured data.

Conclusion
Modeling data in any non-relational solution requires a different way of thinking about the data itself. Rather than an
assumption that all data cleanly fits into a structure of rows and columns, the data domain can be overlaid on the core
Key/Value store (Riak) in a variety of ways. There are, however, distinct tradeoffs and benefits to understand:

The new consolidated platform will
capture 2.25 billion weather data

points 15 times per hour. As with any
large-scale, algorithmic-type modeling,
the more data you have, the better the
weather predictions will be. NoSQL won
out over relational databases primarily
for its scalability, but Riak was chosen for
its simplicity and ease of administration
at high scale. It won out over Apache
Cassandra, MongoDB and Hadoop.

 		 – The Weather Company

Relational Databases have:
•	 Tables
•	 Foreign keys and constraints
•	 ACID
•	 Sophisticated query planners
•	 Declarative query language (SQL)

Riak has:
•	 A Key/Value model where the value is any

unstructured data
•	 More data redundancy that provides

better availability
•	 Eventual consistency
•	 Simplified query capabilities
•	 Riak Search

What you will gain:
•	 More flexible, fluid designs
•	 More natural data representations
•	 Scaling without pain
•	 Faster response times
•	 Reduced operational complexity

Picking the right database for your team
requires a careful understanding of:
•	 The requirements of your application or platform
•	 What developer productivity means to you
•	 The operational conditions you need
•	 How different database solutions support

your goals.

TRADEOFFS AND BENEFITS

